\(f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n\)
\(f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n\)
\(f(z) = \sum_{n=-\infty}^{\infty} a_n(z-a)^n \\ a_n = \frac{1}{2\pi i}\oint_{|z-a|=r}\frac{f(z)}{(z-a)^{n+1}}dz\)
\(f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos{\frac{2\pi nx}{T} + b_n\sin{\frac{2\pi nx}{T}}}\right) \\ a_0 = \frac{2}{T}\int_{0}^{T}f(x)dx \\ a_n = \frac{2}{T}\int_{0}^{T}f(x)\cos{\frac{2\pi nx}{T}}dx \\ b_n = \frac{2}{T}\int_{0}^{T}f(x)\sin{\frac{2\pi nx}{T}}dx\)
import math
print(math.pi)